Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Chinese herbal formulae defend against Mycoplasma gallisepticum infection
WANG Ying-jie, LIANG Ya-xi, HU Fu-li, SUN Ying-fei, ZOU Meng-yun, LUO Rong-long, PENG Xiu-li
2022, 21 (10): 3026-3036.   DOI: 10.1016/j.jia.2022.07.038
Abstract247)      PDF in ScienceDirect      

Mycoplasma gallisepticum HS strain (MG-HS) is a pathogen that causes chronic respiratory disease (CRD) in chicken, which is characterized by host respiratory inflammatory damage, brings huge economic losses to the poultry industry.  Recently, emerging Chinese herbal medicines (CHM) have been used to treat CRD.  This study was aimed to investigate the preventive and therapeutic effects and their potential mechanisms of Chinese herbal medicinal formulae (CHMF), which consisted of 10 kinds of Chinese herbal medicine including Scutellaria, Houttuynia cordate and licorice, on MG-induced CRD in chickens.  With respect to the preventive effect, the results showed that CHMF could effectively recover the MG-induced decrease on body weight and feed conversion ratio.  Histopathological analysis showed that both prevention and treatment of CHMF could significantly alleviate the severe respiratory inflammation induced by MG infection.  Moreover, compared with the MG infection group, both the prevention groups and the treatment groups of CHMF could effectively reduce the expression of MG adhesion protein (pMGA1.2) to inhibit the proliferation of MG, and thus effectively inhibit the expression of MG-induced inflammatory factors interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α).  In summary, these findings confirm that CHMF can protect chickens from various tissue damage caused by MG infection and has no adverse effects on the performance of chickens in the short term.  And its efficacy against MG is equal to or better than that of tiamulin.

Reference | Related Articles | Metrics
The expression of Lin28B was co-regulated by H3K4me2 and Wnt5a/β-catenin/TCF7L2
ZHANG Ya-ni, HU Cai, WANG Ying-jie, ZUO Qi-sheng, LI Bi-chun
2020, 19 (12): 3054-3064.   DOI: 10.1016/S2095-3119(20)63441-4
Abstract97)      PDF in ScienceDirect      
Lin28A and Lin28B are homologous RNA-binding proteins that participate in the development of primordial germ cells.  The mechanisms underlying expression and regulation of Lin28A have been well documented, but such information for Lin28B is limited.  In this study, a fragment of the Lin28B promoter was cloned, the pEGFP-pLin28B vector was constructed.  DF-1 chicken fibroblasts were transfected and the expression of green fluorescent protein (GFP) was measured.  Furtherly, Lin28B promoter of different lengths fragments was cloned using the chromosome-walking method and the fragments were ligated into the PGL3-Basic vector, and transfected into DF-1 cells.  Results of dual-luciferase reporter assay showed that the core of the Lin28B promoter was included in the sequence from –1 431 to –1 034 bp.  The binding sites of the transcription factor TCF7L2 was showed within this sequence by bioinformatics analysis.  The promoter activity of Lin28B was downregulated (P<0.05) when the TCF7L2 binding site was mutated.  Further experiments suggested that Lin28B promoter activity responded to the activation or inhibition of Wnt signaling.  Results of chromatin immunoprecipitation and quantitative PCR showed that β-catenin-TCF7L2 may be enriched in the Lin28B promoter core area.  In vivo and in vitro activation or inhibition of Wnt signaling significantly up- or down-regulated (P<0.05) Lin28B expression.  H3K4me2 enriched in the promoter of Lin28B, which affected the regulation of Wnt signaling to Lin28B.  In conclusion, our results showed that H3K4me2 and Wnt5a/β-catenin/TCF7L2 were the positive regulators of Lin28B expression.  Findings of this study may lay a theoretical foundation for illuminating the mechanism underlying Lin28B expression.
Reference | Related Articles | Metrics
Research on the appropriate way to transfer exogenous substances into chicken embryos
WANG Yi-lin, JIN Kai, HE Na-na, CHENG Shao-ze, ZUO Qi-sheng, LI Dong, WANG Ying-jie, WANG Fei, JI Yan-qing, LU Zhen-yu, ZHANG Chen, WANG Man, ZHAO Rui-feng, YU Xin-jian, ZHANG Ya-ni, ZHAO Wen-ming...
2017, 16 (10): 2257-2263.   DOI: 10.1016/S2095-3119(17)61668-X
Abstract505)      PDF in ScienceDirect      
In biological research, chicken embryos are a classic experimental model for the exploration of the embryonic development and cell differentiation.  Transferring exogenous substances into chicken embryos for producing medical antibodies has been widely used in the production practice.  However, there are few studies about the effect of the different injection site and dosage on chicken embryos.  The aim of this study was to explore the effects of different injection sites and dosages on chicken embryo hatching rate and development, so as to provide a basis for further studies using the chicken embryo model.  Freshly laid eggs (Rugao yellow chicken) were injected with different doses of saline at the tip, equatorial plane and the blunt end of the egg shell, respectively.  Egg hatching rate was recorded and compared among injection sites and different doses.  A trypan blue stain was also injected at the aforementioned sites and the growth of chicken embryos was observed.  The SPSS (statistical package for the social science) software was used to analyze the relationship between the chicken eggs hatching rate and the different injection sites or the different dosages.  The experimental results showed that there were significant differences on egg hatching rates among the different injection sites and doses (P<0.05).  The hatchability of the blunt end injection group was significantly higher than that of the other two sites.  The egg hatching rate decreased with increased saline doses.  The egg hatching rate of the 100 µL saline injection group was higher than the 200 and 300 µL dosage groups.  Ultimately, we suggest that the optimal chicken embryo injection process is during early development, at the blunt end site with a dose less than 100 µL to minimize damage to the egg.
Reference | Related Articles | Metrics
Identification of a novel gain-of-function mutant allele, slr1-d5, of rice DELLA protein
ZHANG Yun-hui, BIAN Xiao-feng, ZHANG Suo-bing, LING Jing, WANG Ying-jie, WEI Xiao-ying, FANG Xian-wen
2016, 15 (7): 1441-1448.   DOI: 10.1016/S2095-3119(15)61208-4
Abstract1416)      PDF in ScienceDirect      
  Controlling the height of crops plays a crucial role for their yields. The large scale utilization of semi-dwarf varieties has greatly improved crop yield, providing an effective support for world food security. In rice, a main food for over half of the world’s population, a number of dwarf loci have been identified. However, most of them are recessive, such as the ‘green revolution’ gene sd1. To gain more beneficial loci for rice breeding programs, exploring new mutations is needed, especially the dominant loci which can be used broadly for hybrid breeding. Here, we isolated a novel dominant dwarf rice mutant, slr1-d5. All of the internodes of slr1-d5 are reduced. We find that the responsiveness of slr1-d5 to gibberellin (GA), GA3, was significantly reduced. Map-based cloning revealed that the dominant dwarfism of slr1-d5 was caused by an amino acid substitution in the N-terminal TVHYNP domain of rice DELLA protein, SLR1, where the conserved amino acid Pro (P) was substituted to His (H). Our findings not only further prove the pivotal role of TVHYNP motif in regulating SLR1 stability, but also provide a new dwarf source for improvement of rice germplasms.
Reference | Related Articles | Metrics
WANG Teng-fei, FAN Chang-yong, XIAO Yu-fei, LV Shan, JIANG Guang-yang, ZOU Meng-yun, WANG Ying-jie, GUO Qiao, CHE Zheng-hao, PENG Xiu-li
DOI: 10.1016/j.jia.2023.11.043 Online: 29 November 2023
Abstract32)      PDF in ScienceDirect      

Mycoplasma gallisepticum (MG) is a common avian pathogen that mainly infects poultry, causing significant reductions in body weight gain and egg production, along with damage to immune organs and immunosuppression. MG is susceptible to co-infections with other pathogens, leading to increased mortality rates and significant economic losses in the global poultry industry. While antibiotics have been extensively applied worldwide to treat MG infections in poultry production, concerns regarding antibiotic resistance and residue remain prevalent. Traditional Chinese medicine (TCM), renowned for its natural, safe, and non-toxic properties, has shown significant anti-inflammatory and immune-enhancing effects. This study aimed to investigate the protective effect of TCM on production performance and its impact on MG-induced immunosuppression through the MAPK/ERK/JNK signaling pathway in chickens. Our results showed that TCM alleviated the negative effects of MG infection on production performance, as evidenced by improvements in body weight gain, feed conversion rate, survival rate, and immune organ index. TCM exhibited direct inhibition of the MG proliferation in vitro and in vivo. Furthermore, TCM treatment promoted the normalization of trachea and lung tissue structure in MG-infected chickens, leading to a significant reduction in inflammatory damage. Moreover, following the treatment with the TCM, the production of pro-inflammatory cytokines Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α) decreased significantly, accompanied by the downregulation of pro-apoptotic genes caspase3, caspase9, and BAX, both in vitro and in vivo. A mechanism-based study showed that in vitro and in vivo treatment with the TCM significantly reduced the expression of key proteins, including early growth response gene1 (EGR1), p-ERK, p-JNK, and p-JUN. Altogether, TCM improved body weight gain, inhibited pro-inflammation responses, and alleviated tissue damage by inhibiting the MAPK/ERK/JNK signaling pathway to protect the performance and immune system of MG-infected chickens.

Reference | Related Articles | Metrics